
52

Keyword-based Search on Relational Data

Myint Myint Thein

University of Computer Studies

Mandalay, Myanmar

mmyintt@gmail.com

ABSTRACT

Keyword-based search in relational database is an

easy and effective way for ordinary users or Web

users to access relational databases. Even though

the relational database management systems

(RDBMs) have provided full-text search

capabilities, they do not support keyword-based

search model. The text databases and relational

databases are different that is challenging task to

apply the keyword search techniques in

information retrieval (IR) to DB. Much research on

keyword-search in relational databases has been

developed. But existing researches are still

problem which is a growing dissatisfaction among

users searching for information that they are

actually desirable. In this paper, we propose a new

candidate network generation algorithm

(Heuristic_CNGen) based on the Iterative

Deepening A*(IDA*) algorithm. We also propose

a new ranking method by adapting existing IR

scoring techniques based on the virtual document.

We present the keyword-based search to retrieve

relevant queries in relational databases by free-

style keyword query that improves the efficiency

and effectiveness.

Keywords- Keyword-based; Relational Database;

Candidate Network; IR;

1. INTRODUCTION

Keyword-based search in relational databases
enables ordinary users, who do not understand the
underneath schema and SQL, to find relevant
results among the tuples stored in relations, with a
given set of keywords. In traditional search model
in relational databases, users need to have
knowledge of the database schema and to use SQL.
Even though RDBMs have provided full-text
search capabilities, they do not support keyword
search model [4, 5]. The database research
community has recently recognized the benefits of
keyword search and has been introducing keyword
search capabilities into relational databases. The
existing methods of keyword search in relational
databases can be broadly classified into two

categories that are schema based method and graph
based method [1].

In schema based keyword search in relational
database, there has two steps for retrieving answers
by processing with the user typed keyword. First,
generating all valid candidate networks are called
connected tuples tree by joining tuples from
multiple tables. A candidate network must satisfy
the two conditions, total and minimal. Because it is
meaningless if two tuples in a connected tuple tree
are too far away from each other, the maximum
numbers of tuples allowed in a connected tuple tree
are needed to specify. Existing candidate network
generation, CN’s size is unbounded and the number
of CNs grows very large for small CN’s size. This
fact brings large overhead for both computation
and memory cost. Second, computing a single score
for each CN and then combining them together to
get the final score that the most relevant answers
are ranked as high as possible. A ranking method is
essential for getting user satisfaction. Some of
existing ranking methods may even lead to search
results contradictory to user perception.

Consider a DBLP [11] database maintains
publication records in several relations in a
relational database. Suppose a user wants to search
papers written by “Jinlin Chen” with “Web and
Content” on a publication database. A user has
typed in a query “chen web and content”, and the
system will return the relevant answers possibly
with multiple tuples from different tables that are
joined together to form a meaningful result to the
query.

In this paper, we study how to search structural
information among tuples in a relational database
using keyword-based. We develop the new
methods to address these challenges. We fist
propose a candidate network generation algorithm
to find relevant answers on-the-fly by joining tuples
in the database. We propose a new ranking method
by adapting the IR ranking methods based on the
virtual document that is answered the effective
relevant documents from relational database for the
user. The proposed methods support efficient and
effective keyword-based search on large amounts
of relational data.

The rest of the paper is organized as
follows: Section 2 discusses the related works.
Section 3 presents the basic concept of keyword
query and architecture of our system. Section 4 and
5 present the Candidate Network Generation and

53

Query execution, respectively. Section 6 shows the
experimental result. Section 7 concludes this paper.

2. RELATED WORK

The main goal of a keyword search system is to

find a set of closely inter-connected tuples that

collectively match the keywords. One type of

methods is based on modeling data as a graph, and

the results as subtrees or sub-graphs. Another type

of methods is based on relational databases where

structured data are stored.

Several researchers have been done on early

keyword search systems for relational databases [2,

7, 8]. Yu et al. [4] surveyed the developments on

finding structural information among tuples in an

RDB using an l-keyword query. They discussed the

keyword search systems by comparing between

schema-based keyword search and graph-based

keyword search in RDB. The former evaluated the

sets of answers by defining all minimal total joining

networks of tuples between CNs and the latter

showed how to answer keyword queries using

graph algorithms focused on weighted directed

graph.

DISCOVER [7] proposed the CN generation

algorithm based on a breadth-first traversal in the

search space. This proposed algorithm expanded

the partial CNs generated to larger partial CNs until

all CNs are generated. The problem with this

algorithm is that the cost of generating the set of

CNs is high and kept in memory for further

extension. IR-Style [8] proposed IR-style ranking

method to rank tuple trees. This method had not

considered the effectiveness of the query results. S-

KWS [2] developed an algorithm that reduces the

number of partial results generated by expanding

from part of the nodes in a partial tree and avoid

isomorphism testing by assigning a proper

expansion order. Although it reduced the generated

partial results, it existed overhead for generating

minimal CNs to the query. In contrast, we propose

the CN generation algorithm to apply heuristic

value for generating minimal CNs.

Liu et al. [3] described the answer graph

generation algorithm to generate tuple trees and

ranking formula by adapting four normalizations to

address the retrieval effectiveness issue. Although

they produced duplication-free CNs by assigning

the different alias, they had not considered the

efficiency of answer generation. SPARK2 [9]

developed the duplication-free algorithm by

canonical form but it did not solve the number of

CNs grows very large for small CN size. They

modified the IR ranking method based on the

virtual document. Their method produced repeated

information which concerns overlapping among the

top-k JTTs. In this paper, we propose a new

ranking method to reduce the meaningless results

which are disappointed for user.

3. PRELIMINARIES

3.1. Query Representation

A relational database can be viewed as a graph
which represents a relational model such as schema
graph Gs (V, E) [4, 6, 10]. A relational database is a
collection of relations. Each relation in the database
corresponds to a vertex in Gs, denoted as the set of
relation schemas {R1,R2, …}. Edges represent the
foreign key to primary key relationships between
pairs of relation schemas, Ri and Rj, denoted
Ri→Rj. A relation on relation schema Ri is an
instance of the relation schema, such as a set of
tuples, conforming to the relation schema.

We use directed schema graph that shows in
Figure 1. as the schema graph of publication
database. It consists of six relation schemas:
Person, Inproceeding, Proceeding, Publisher,
Series and Relation-Person-Inproceeding. Each
relation has a primary key (PK). Inproceeding has
one foreign key that refers to the primary key
defined on Proceeding. Proceeding has two foreign
key that refer to the primary key defined on
Publisher and Series. For simplicity, we assume all
primary key and foreign key attributes are made of

54

Figure 1. Publication Database Schema Graph

same attribute with attribute of related relation.
There are no self loops and at most one foreign key
to primary key relationship between any two
relations.

A keyword query (Q) consists of a list of

keywords {k1,k2,…, kq}, and searches interconnected

tuples that contain the given keywords. For a given

query Q, a result is the set of all possible joining

networks of tuples. A joining network of tuple is a

connected tuple tree (T). Each node ti is a tuple in

the database, and each pair of adjacent tuples in T

is connected via a foreign key to primary key

relationship. Suppose (Ri,Rj) is an edge in the

schema graph. Let ti Є Ri, tj Є Rj, and (ti join tj) Є

(Ri join Rj). Then (ti,tj) is an edge in the connected

tuple tree T. The size of a connected tuple tree is

the number of tuples involved. Note that a single

tuple is the simplest tuple tree with size 1. For

simplicity, we use I, R, U, P, S and RPI to denote

the relations Inproceeding, Proceeding, Publisher,

Person, Series and Relation-Person-Inproceeding

respectively.

3.2. Keyword-based Search Architecture

In this section, we demonstrate the architecture of
keyword-based search on relational data that is
shown in Figure 2. The system supports free-style
keyword search by computing answers to keyword
queries with user typed keywords. The query

cleaning phase filters out as potential index terms

Figure 2. Architecture of Keyword-based Search

on Relational Data
as removed stopwords query. This process reduces
the size of the indexing structure considerably. The
indexing unit in a relational document can be a
field, attribute, tuple, table, or any combination of
these. After the system has built the inverted index
files as posting table for each relation, the indexer
produces the matched tuple sets by using the
filtered input query. The system generates a set of
CNs by traversing on the schema graph in order to
the tuple sets. Query executing phase executes
queries for each CNs and ranks the executed
queries on the virtual document. Finally, the system
returns the ranking relevant results to the user for a
given query.

4. CANDIDATE NETWORK GENERATION

In this section, we introduce the existing

candidate network strategies by motivating our

work. Then, we propose a new CN generation

algorithm for schema-based keyword search in

relational database.

55

4.2. Identifying Connected Tuple Tree As

Result

For a given query Q, the connected tuple tree is

generated according to a CN that is some tuples

coming from different relations. For each pair of

adjacent tuple sets Ri, Rj in connected tuple tree,

there is an edge (Ri, Rj) in the directed graph G.

Each connected tuple tree that defined satisfaction

as follow:

 Property 1: If a node in connected tuple
tree is one of tuples in relation, it contains
at least one keyword in query Q
(completeness).

 Property 2: there is no duplicate tuple with
each other in the connected tuple tree
(duplication-free).

Note that if a node has two or more edges that

may or may not contain any keyword. This fact

implies that (1) if a result contains multiple tuples,

they must be joined together as a tree, and (2) if we

remove any node in the connected tuple tree that

has a tuple with no keywords, there is no

redundancy.

The Connected Tuple Tree 1 for Query 1 and

Connected Tuple Tree 2 for Query 2 show in

Figure 3., such as examples. In Connected Tuple

Tree 1, a node P1 contains the keyword “Chen”,

and I1 contains two keywords “Web” and

“Content”, and U1 contains the keyword

“Springer” in Query 1. In Connected Tuple Tree 2,

the nodes P2 and I3 contain the keywords “Yui”

and “Web”, and U3 contains the two keywords

“Erlbaum” and “Lawrence” in Query 2

respectively. Except primary-foreign relation

nodes, all remaining nodes contain the keywords in

given query, and there are no duplicate nodes. In

this paper, we consider a connected tuple tree as a

result as long as it fulfills the properties.

4.3. Generating Candidate Networks As

Result

In this section, we describe generating the

connected tuple trees as result in detail. Given a

keyword query Q, the system first receives all the

query tuple set R
Q
 for all relations R as input. Then

it focus on generating all the valid CNs which are

joined expressions to be used to create connected

trees of tuples that will be considered as potential

results to the query. For example, the non-free

query tuple set R
N

of relation Person for Query

1and Query 2 are P
Q1

={P1,P2,P3,P4} and

P
Q2

={P2} respectively. The free query tuple set R
F

of relation Person for Query 2 is P
Q2

={P1,P3,P4}.

Figure 3. Queries, Connected Tuples Trees and

Candidate Networks

We use R
NorQ

 to define a tuple set, if CN is a

result then each node belongs to the non-free query

tuple set R
N
 and the free query tuple set R

F
of each

relation R for a given query.

Note that the free

query tuple set in CN cannot contain the query

keyword, but they support to the non-free query

tuple set as primary-foreign keys relationship. We

identify a network graph as a joined expression of

the query tuple sets that produces connected tuple

trees as result. We define the size of a network

graph as the number of nodes the same as the

generated connected tuple tree’s size. We apply the

candidate network generation algorithm based on

IDA* to generate all network graphs for a given

query Q and schema graph SG. In the proposed

algorithm, we set up three parameters: MAXN,

f_limit and f_new. First, the maximum number of

tuple sets, denote MAXN, in a network graph to

reduce generating meaningless results. Second, the

node the cheapest solution through node Rj
N

is less

than given f_limit value. If the estimated cost of

node Rj
N
 add in front of queue E, if the estimated

cost of Rj
N
 is more than f_limit

Query 1: “Chen Web Content Springer”

Connected

Tuple Tree 1: P1→RPI1←I1→R1→U1

 CN1: P
N
 RPI

F
 I

N
 R

F
 U

N

Query 2: “Yui Web Erlbaum Lawrence”

Connected

 Tuple Tree 2: P2→RPI2←I3→R2→U3

 CN2: P
N
 RPI

F
 I

N
 R

F
 U

N

56

value, the node Ri
N

that is adjacent node Rj
N
 in SG

add in front of E. Third, f_new assign heuristic

value of a new node that is adjacent by the existing

node in schema graph. Finally, the number of CNs

is only data bounded by the query and database.

And it produces connected tuple trees as results by

evaluating the corresponding joined expressions.

The following Properties 3 and 4 prove the

completeness and duplication-free on the results of

the algorithm, if we do not violate any constraints.

 Property 3: The set contains all CNs with
no more than MAXN (completeness).

 Property 4: Every two CNs are not

isomorphic to each other. (duplication-

free).

5. QUERY EXECUTION

In this section, we propose a new ranking

strategy for effective keyword search in relational

database. Then, we discuss how to use it to

improve the ranking strategy.

5.1. Modified IR Ranking Score

To rank documents, IR systems assign a

score for each document as an estimation of the

document relevance to the given query. In IR, a

document is a basic information unit stored in a text

database. It is also the basic unit of answers needed

by users. A similarity value between a given query

and a document is computed to rank documents. In

relational keyword search, the basic text

information unit stored in a relational database is a

text column value. The basic unit of answers

needed by users is a connected tuple tree which is

assembled by joining multiple tuples, each of which

may contain zero, one or multiple text column

values. A similarity value between a given query

and a connected tuple tree needs to be computed to

rank connected tuple trees. We propose a solution

based on the idea of modeling a connected tuple

tree as a virtual document. Consequently, the entire

results produced by a CN will be modeled as a

document collection. By adopting such a model, we

assign an IR ranking score to a connected tuple tree

as:

, where ntf indicates the normalized trem

frequency, ndl is the normalized document length,

idf is the inverse document frequency and tfk (CN)

denotes the number of occurrences of the CN

which belongs to the connected tuple tree such as

document.

5.2. Tuple Size Normalization Factor

We evaluate a score value for the size of CN

and the size of the given query, especially for a

complex query whose relevant results are

connected tuple tree involving multiple tuples, each

of which contains a subset of the keywords query.

We believe that the users usually prefer documents

matching many keywords query to those matching

only few keywords. To approximately the user

perception, we define the tuple size normalization

factor for a query.

Finally, the relevance score of a connected

tuple tree to a keyword query is computed as:

6. EXPERIMENTAL RESULTS

We evaluate our proposed algorithm on DBLP

dataset. It consists of a set of XML entries with

each entry representing a single publication. We

decomposed into relations from a downloaded

57

XML file according to the schema that is shown in

Figure 1. For evaluation, we manually picked a

large number of queries on this data. We focus on

10 queries with query length ranging from 2 to 6.

All queries generating algorithm was implemented

in Java, and JDBC was used to connect to the

database.

In this paper, we do not evaluate the

performance of the proposed ranking method. We

focused on the performance of the proposed

Heuristic_CNGen algorithm. We compare the

evaluation results of the native algorithm and the

proposed algorithm by using the same DBLP

dataset that is shown in Figure 4. We observe that

proposed algorithm achieve better search

performance than the existing native methods.

Figure 4. Comparison of Native Algorithm and

Proposed Algorithm

7. CONCLUSION

Keyword search allows ordinary users to find text

information in relational databases with much

higher flexibility. In this paper, we present the

keyword-based search to retrieve relevant queries

in relational databases by free-style keyword query.

A keyword query in the system is a list of keywords

and does not need to specify any relation or

attributes names. The result to such a query consists

of the minimal connected tuple trees, which

potentially include tuples from multiple relations by

joining tuples in database. To produce connected

tuple trees, we presented a new candidate network

generation algorithm (Heuristic_CNGen) by

generating all the valid CNs which are joined

expressions. The proposed method can solve the

growing CNs for small CN size with the generating

candidate network methods in previous works. We

also proposed a new ranking method by adapting

the IR ranking techniques based on the virtual

document to rank the connected tuple trees. The

proposed methods retrieve the relevant results

approximately for a given query.

REFERENCES

[1] A.Baid, I.Rae, J.Li, A.Doan, J.Naughton, “Toward
Scalable Keyword Search over Relational Data,” Proc.
VLDB End., Vol. 3, 2010.

[2] A.Markowetz, Y.Yang, D.Papadias, “Keyword Search on
Relational Data Streams,” Proc. 2007 ACM SIGMOD
Int. conference on Management of data, 2007, pp. 605-
616.

[3] F.Liu, C.Yu, W.Meng, "Effective Keyword Search in
Relational Databases," Proc. 2006 ACM SIGMOD Int.
conference on Management of data, 2006, pp. 563-574.

[4] J.X.YU, L.Qin, L.Chang, “Keyword Search in Relational
Databases: A Survey,” IEEE Data Engineering Bulletin,
Vol. 33, 2010, pp. 67-78.

[5] K.Stefanidis, M.Drosou, E.Pitoura, "PerK: Personalized
Keyword Search in Relational Databases through
Preferences," Proc. 13th Int. Conference on Extending
Database Technology, EDBT, 2010, pp. 585-596.

[6] L.Qin, J.X.Yu, L.Chang, “Keyword Search in Databases:
The Power of RDBMs,” Proc. 35th SIGMOD Int.
Conference on Management of data, 2009, pp. 681-694.

[7] V.Hristidis, Y.Papakonstaninou, “DISCOVER: Keyword
Search in Relational Databases,” Proc. 28th Int.
Conference on Very Large Data Bases, 2002, pp. 670-681.

[8] V.Hristidis, L.Gravano, Y.Papakonstantinou, "Efficient
IR-Style Keyword Search over Relational Databases,"
Proc. 29th Int. Conference on Very Large Data Bases,
2003, pp. 850-861.

[9] Y.Luo, W.Wang, X.Lin, X.Zhou, “SPARK2: Top-k
Keyword Query in Relational Databases,” TKDE Special
Issue: Keyword Search on Structured Data, 2011.

[10] Y.Xu, Y.Ishikawa, J.Guan, "Effective Top-k Keyword
Search in Relational Databases Considering Query
Semantics,” APWeb/WAIM Int. Workshops, 2009, pp.
172–184.

[11] http://www.dblp.uni.trier.de.

